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Abstract

The paper presents two-dimensional calculations for spontaneously nucleating flows of steam in converging–diverging nozzles.

The Reynolds-averaged Navier–Stokes equations are solved for the two-phase mixture, using a Jameson-style finite volume method

on an unstructured and adaptive triangular mesh. Results are first presented for steady, viscous flow, showing the influence of

boundary layer growth on streamwise pressure distributions and droplet sizes. These results have implications for the interpretation

of some of the experimental data used for validating the theories of nucleation and droplet growth. The numerical scheme has also

been applied to compute unsteady flows in a variety of nozzle geometries, covering a range of inlet conditions in each case.

Asymmetric oscillation modes, previously observed in moist air, have been predicted for one of the geometries, indicating for the

first time that such oscillations are possible in pure steam.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The use of converging–diverging nozzles as a means

of studying condensation in steam dates back to the

early experiments of Stodola (1905). In such experi-

ments, steam is expanded from an initially saturated or

slightly superheated state, and typically acquires suffi-

cient subcooling for spontaneous nucleation of droplets
in the diverging section of the nozzle, where the flow is

supersonic. The subsequent release of latent heat from

growing droplets thus results in a deceleration of the

flow and a rise in pressure, known traditionally as the

‘‘condensation shock’’. Measurements of nozzle pres-

sure distributions (e.g., Binnie and Woods, 1938) and,

more recently, the use of light scattering data to infer

droplet sizes (e.g., Moore et al., 1973) have been used
extensively to test the theories of nucleation and droplet

growth. Furthermore, nozzle experiments, using both
*Corresponding author. Tel.: +44-1223-765-310; fax: +44-1223-330-

282.

E-mail address: ajw36@cam.ac.uk (A.J. White).

0142-727X/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijheatfluidflow.2004.04.002
pure steam and moist air, have revealed a variety of

interesting phenomena which stem from the coupling

between the condensation process and the gas dynamics.

These include the formation of true, aerodynamic shock

waves when the heat release is supercritical (i.e., more

than sufficient to revert the flow to sonic conditions),

and oscillatory flow regimes which arise from interac-

tion between such shock waves and the zone of intense
nucleation. Recently, an interesting asymmetric oscilla-

tion mode has been detected in moist air nozzle flows by

Adam and Schnerr (1997), using both experimental and

numerical techniques. Phenomena of this sort serve to

highlight the dramatic ways in which condensation im-

pacts upon the flowfield, and have implications for

practical condensing flows, such as those occurring in

low pressure steam turbines.
In the current paper, a two-dimensional calculation

method for viscous, wet-steam flow is described. The

method employs unstructured, adaptive mesh and is,

therefore, able to focus on regions of rapid flow change.

Results are presented for both steady and unsteady

condensation in nozzles. The steady flow calculations

serve to validate the method and also highlight the

mail to: ajw36@cam.ac.uk


Nomenclature

Cl;C� turbulence modelling constants (see Appen-

dix A)

e specific internal energy

E total specific internal energy

fl turbulence damping parameter defined by

Eq. (A.1)

G droplet growth rate, dr=dt
h specific enthalpy
H total specific enthalpy

J nucleation rate per unit mass of mixture

k turbulent kinetic energy, Boltzmann’s con-

stant

lv mean free path of vapour molecules

M mass of H2O molecule

p pressure

Pr Prandtl number of the vapour
qj heat flux in jth coordinate direction

Rv gas constant for H2O per unit mass

r droplet radius

r� Kelvin–Helmholtz critical radius

t time

T temperature, period of oscillation

ui; uj velocity components

v specific volume
xi; xj spatial coordinates

y wetness fraction

dij Kronecker delta

DT vapour subcooling, ðTs � TvÞ
k thermal conductivity of the vapour

l dynamic viscosity of the vapour

lm mth order moment of the droplet size distri-

bution

m semi-empirical droplet growth parameter (see
Young, 1982)

q density

r surface tension

sij shear stress

n nucleation rate adjustment, defined by Eq.

(B.4)

Subscripts

i; j coordinate direction indices

l; v liquid/vapour phase

L;T laminar/turbulent quantities

m moment index

s saturation quantity

01 inlet stagnation state

Unsubscripted quantities refer to mixture
values where appropriate.
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implications of boundary layer growth for the inter-

pretation of droplet size and pressure measurements.

The focus is on how the boundary layer modifies the

effective nozzle geometry––other effects, such as the
impact of viscous dissipation on nucleation and the

droplet size distribution, have been discussed elsewhere

(White, 2000). The unsteady results, to the best of the

authors’ knowledge, constitute the first predictions of

asymmetric oscillations for pure steam.
2. Governing equations

The two-phase wet-steam mixture comprises vapour

at pressure p and temperature Tv, and spherical liquid

droplets at temperature Tl. In general, droplets exist with

a continuous distribution of sizes, but are assumed

sufficiently small that they travel with the vapour

velocity. The liquid temperature is strictly a function of

droplet size, but except in the case of extremely small
droplets (which make a negligible contribution to the

mass of liquid), Tl lies very close to the local saturation

temperature, TsðpÞ. Thus, with negligible error, mixture

specific quantities, such as the specific enthalpy, h, may

be written in the form
h ¼ ð1� yÞhv þ yhl; ð1Þ
where y is the mass fraction of liquid (the wetness frac-

tion), hv is the specific enthalpy of the vapour, and hl is
the specific enthalpy of saturated liquid evaluated at
TsðpÞ. Expressions similar to Eq. (1) apply to the mixture

specific internal energy, e, and mixture specific volume,

v. The mixture density is then given as q ¼ 1=v.

2.1. Conservation equations

In the absence of velocity slip, the Reynolds-averaged

continuity, Navier–Stokes and energy equations for the

mixture as a whole take their usual (single-phase) form:

o
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quj
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where the symbols have their usual meanings, and are

given explicitly in the notation or defined below. (All

variables are considered as averaged quantities, with

densities and pressures taken as time averages, and

velocities, internal energy and enthalpy as density-

weighted averages.)
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2.2. Turbulence modelling

In the Reynolds-averaged form of Eq. (2), the stress

tensor components, sij, comprise laminar and turbulent
contributions which are computed here by means of

laminar and turbulent viscosities, lL and lT, respec-

tively. (Note that the direct effect of turbulent fluctua-

tions on the nucleation rate has not been modelled here.)

Thus,

sij ¼ ðlL þ lTÞ
oui
oxj

�
þ oui
oxj

� 2

3

ouj
oxj

dij

�
� 2

3
qkdij ð3Þ

where k is the (density-weighted) turbulent kinetic en-

ergy.

For the majority of wet-steam flows of practical

interest, the volume fraction of the liquid phase is of the

order of 10�5. It is thus assumed that the laminar vis-

cosity, lL, is given sufficiently accurately by its vapour-

phase value. The turbulent viscosity, lT, is obtained
from a standard k–e model (Yang and Shih, 1993):

lT ¼ qflClktT; ð4Þ
which requires solution of transport equations for the

turbulent kinetic energy, k, and dissipation rate, e:
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where lk ¼ lL þ lT=rk and le ¼ lL þ lT=re. Details of
the various parameters and constants used in the tur-

bulence model are given in Appendix A. Heat fluxes, qj,
(see Eq. (2)) also comprise laminar and turbulent com-

ponents, and hence are given by:

qj ¼ �ðkL þ kTÞ
oTv
oxj

; ð7Þ

where the turbulent thermal conductivity, kT, is deter-

mined by specifying a turbulent Prandtl number of 0.9.
Fig. 1. Control volume on the triangular unstructured mesh. The

shaded region shows the control volume associated with the central

node, K.
2.3. Growth of the liquid phase

Closure of the conservation equations requires com-

putation of the wetness fraction, y, which changes by
virtue of nucleation and droplet growth. For the calcu-

lations presented here, the polydispersed nature of the

droplet size distribution is treated by means of a mo-

ment-based method, first introduced by Hill (1966). A

full description of this method applied to wet-steam flow

is given by White and Hounslow (2000). Defining the

size distribution, f ðrÞ, such that f ðrÞdr is the number of

droplets per unit mass of mixture in the size range r to
r þ dr, the wetness fraction is given by,
y ¼ 4

3
pql

Z 1

0

f ðrÞr3dr ¼ 4

3
pqll3 ð8Þ

where l3 is the third moment of the size distribution.
This (and other lower-order moments) is computed from

the general evolution equation for the m-th moment, lm:

o

ot
ðqlmÞ þ

o

oxj
ðqlmujÞ ¼ mqGlm�1 þ qJrm� ;

m ¼ 0; 1; 2; 3 ð9Þ

where J and r� are the nucleation rate and critical ra-

dius, respectively, and G is the growth rate averaged for

the entire distribution of droplet sizes. Expressions for J ,
r� and G are given in Appendix B.
3. Numerical implementation

The numerical scheme employed here is a two-

dimensional version of an unstructured tetrahedral flow

solver developed by Dawes (1992). The equations of

motion (2), (5), (6) and moment equation (9) are dis-

cretised in finite volume form on triangular cells (Fig. 1)

using cell-vertex storage. The equations are applied to a

control volume composed of the cells surrounding each
node, as shown by the shaded region in the figure.

Convective fluxes across each of the cell interfaces are

first computed by averaging quantities at the two

delimiting nodes. The central node, K, thus receives flux
contributions from each of the interfaces forming the

perimeter of the control volume. Viscous and other

dissipative terms are treated as source terms and are

determined by repeated application of the Gauss diver-
gence theorem in a manner similar to that described by

Dawes (1992). Integration in time is accomplished by

means of a four step Jameson-style Runge–Kutta

scheme. Standard boundary conditions are applied (as
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described by Dawes, 1992), and all solid walls are trea-

ted as adiabatic.

3.1. Artificial dissipation

As with all Jameson-style schemes, artificial dissipa-

tion terms are required to dampen oscillations in the

vicinity of flow discontinuities, and to prevent odd–even

decoupling. An adaptive blend of Laplacian and bihar-

monic terms are added, in the fashion described by

Mavriplis and Jameson (1987). However, in regions of

rapidly nucleating flow, low-order moments of the
droplet size distribution behave in a quasi-discontinuous

fashion. The Laplacian dissipation terms for the mo-

ment equations are thus added in proportion to an

adaptive switch based on the zeroth moment:

mk ¼
XN
j¼1

fðl0Þj

����� � ðl0ÞKg
�����

XN
j¼1

fðl0Þj þ ðl0ÞKg;
,

ð10Þ

where the summation is carried out for all nodes con-

nected to K by a cell interface (hence, N ¼ 6 in the

example of Fig. 1).

3.2. Equation of state

Accurate calculations for steam require a real gas

equation of state to represent the vapour phase. How-

ever, most real gas equations are formulated with either

p and Tv or qv and Tv as the independent variables,

whereas solution of the conservation equations effec-

tively yields values for the vapour density and internal
energy. Following Hill et al. (2000), a look-up table

approach has been adopted, whereby values of p and Tv
together with the relevant first derivatives (op=oqv,

op=oev, etc.) are stored as functions of qv and ev. Typ-
ically a grid of 30 · 30 points is used, from which central

difference approximations to second derivatives (e.g.,

o2p=oq2
v) are formed. This permits pressure and vapour

temperature to be unwrapped from specified values of qv

and ev, using functions that are piecewise quadratic in

these two variables. The look-up table may be con-

structed from any appropriate equation of state; that

used here was devised by Young (1992) and is based on

the relation

p ¼ qvRvTvð1þ Zfp; TvgÞ; ð11Þ
where Rv is the specific gas constant for steam and

Zfp; Tvg is a compressibility parameter. Full details of

this equation of state are reported in the paper by
Young.

This method requires negligible additional computa-

tion relative to dry perfect gas calculations (irrespective

of the sophistication of the equation of state used), and

yields results that are numerically indistinguishable from

those obtained by iterative solution to the full real gas

equations.
4. Results for steady condensation in nozzles

Young (1982) has compared measured pressure dis-

tributions and droplet sizes with one-dimensional cal-
culations for a wide range of nozzles in an attempt to

validate and ‘‘tune’’ the expressions for nucleation and

droplet growth. It is not the intention to repeat such an

extensive comparison here. Nonetheless, it is of interest

to re-compute some of the nozzle flows using the current

two-dimensional viscous flow method, since some of the

nozzle geometries exhibit significant two-dimensional

effects, and these are likely to be modified by boundary
layer growth. To some extent, such effects can be ac-

counted for in one-dimensional calculations by inferring

the effective nozzle area variation from dry-expansion

pressure measurements, but it is conceivable that the

viscous effects will be modified when condensation is

occurring. Unfortunately, none of the experimental data

available in the literature contain sufficient detail of

boundary layers (e.g., thicknesses and velocity profiles at
nozzle inlet) to fully specify viscous flow calculations.

For the purposes of comparison, inviscid, laminar and

turbulent calculations are, therefore, presented and

boundary layers are allowed to grow from zero thick-

ness at inlet to the computational domain. (Calculations

undertaken with different lengths of inlet section show

relatively little difference due to the rapid acceleration

prior to the throat.) No transition model is included, so
where appropriate the boundary layer is assumed tur-

bulent from the inlet.

Fig. 2 shows a typical unstructured mesh (subsequent

to adaptive refinement) used for calculations presented

below. The mesh is densely packed near the wall to re-

solve the boundary layer, and has been refined on the

basis of changes in the zeroth moment (proportional to

the number of droplets per unit mass of mixture) which
varies rapidly in the nucleation zone and across the

boundary layer. To obtain mesh-independent solutions,

it was found that an additional region of refinement was

required (selected on the basis of pressure variation) to

resolve rapid changes in flow properties just downstream

of the throat.

Predictions of nozzle centreline pressure and droplet

size are compared in Fig. 3 with experiment for nozzles
B and C of Moore et al. (1973). The geometry of these

nozzles (given in the reference, and outlined in Appendix

C) comprises a circular arc near the throat blended with

a straight line section downstream. This discontinuity in

curvature produces strong two-dimensional effects,

which show up as undulations in the centreline pressure.

These are particularly evident in the inviscid calcula-

tions, but are smoothed out by growth of the boundary
layer in the viscous cases. Substantial differences are also

apparent in the computed droplet sizes, and these stem

from interference between the pressure undulations and

the nucleation zone. It is clear that any tuning of the



Fig. 2. Refined mesh used for nozzle C (Moore et al., 1973) calculations. Remeshing has been carried out on the basis of pressure variation (upstream

region) and zeroth moment (downstream).

Fig. 3. Comparison of centreline pressure and Sauter mean droplet size

with the experiments of Moore et al. (1973): nozzle B (above) com-

puted with m ¼ 0:54 and n ¼ 0:4; nozzle C (below) computed with

m ¼ 0:44 and n ¼ 0:4. Turbulent calculations are with an inlet turbu-

lence intensity of 1%, and lT=lL ¼ 100.

Fig. 4. Compressible displacement and momentum thickness for nozzle

C (Moore et al., 1973), computed for dry turbulent flow and con-

densing turbulent flow.
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nucleation and droplet growth equations (for example,

via the parameters m and n discussed briefly in Appendix

B) will depend on how viscous effects are accounted for.

For both nozzles, best agreement with experiment is

obtained with turbulent calculations, but it must be

borne in mind that two-dimensional calculations cannot

reproduce the complete effects of boundary layer growth

since this also occurs on the nozzle endwalls.
The compressible displacement and momentum

thicknesses for turbulent calculations in nozzle C are

compared with the corresponding dry flow values in Fig.
4. As expected, the rise in pressure that accompanies the

condensation process causes an increase in the

momentum thickness. By contrast, the displacement

thickness actually reduces slightly in the condensation

zone compared with its dry value. This latter effect has

also been observed by Schnerr et al. (1992) and is
explicable in terms of condensation induced density

changes. These minor changes in boundary layer growth

have implications for the one-dimensional ‘‘effective

area’’ technique discussed above, and indeed none of the

pressure distributions computed by Young (1982) agree

well with experiment downstream of the condensation

zone. The differences are, however, slight and since

changes in the boundary layer only occur downstream
of the nucleation zone, predicted droplet sizes are un-

likely to be affected.
5. Results for unsteady condensation in nozzles

It is well known that when condensation takes place

at near-sonic conditions, periodically unsteady phe-
nomena may result from interaction between the con-

densation-induced supercritical shockwave and the

nucleation zone. Self-excited oscillations of this nature

were first discovered for moist air flow by Schmidt

(1962), and experimental studies were subsequently
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conducted for wet steam by Barschdorff (1971). Since

then, a number of numerical results for unsteady con-

densation have been presented, including the one-

dimensional calculations of Skillings and Jackson
(1987), and the two-dimensional calculations of White

and Young (1993). More recently, however, Adam and

Schnerr (1997) have identified a new, asymmetric mode

of oscillation for moist air flow, despite their nozzle

geometries being perfectly symmetric. This interesting

mode comprises a complex pattern of oblique shock-

waves, and was first observed experimentally in super-

sonic nozzles with high inlet relative humidity. Adam
and Schnerr were also able to simulate this mode with

inviscid flow computations, obtaining excellent agree-

ment for the variation of oscillation frequency with

relative humidity. An explanation of why this mode

should occur has not yet been published.
Fig. 5. Contours of oq=ox (left) and logðJÞ (right) for one period of asymmet

conditions of P01 ¼ 1 bar and T01 ¼ 372 K. (T is the time for one period osc
In order to ascertain whether such asymmetric oscil-

lations would occur in wet-steam flow, preliminary cal-

culations have been carried out for a range of nozzle

geometries, in each case varying both inlet stagnation
pressure and temperature. Following the approach of

Adam and Schnerr (and in the interests of computa-

tional speed), the calculations have been restricted to

inviscid flow, using grids of moderate mesh density

(typically 1900 computational nodes). The geometries

tested so far include nozzles A–E of Moore et al. (1973),

and circular arc geometries with various expansion

rates. Nozzle E, which has the slowest expansion rate
and shows pronounced two-dimensional effects, is the

only one as yet to exhibit the asymmetric mode, and

only then at inlet pressures of around 1 bar. Contours of

oq=ox (equivalent to a Schlieren image) and log nucle-

ation rate are shown in Fig. 5. No adaptive refinement
ric oscillation. The geometry is nozzle E (Moore et al., 1973), with inlet

illation.)



Fig. 6. Dependence of oscillation frequency on inlet subcooling for

nozzle E (Moore et al., 1973), with P01 ¼ 1 bar. Two oscillation modes

are possible for inlet subcooling in the range )3.8 K to )0.25 K (i.e.,

slightly superheated inflow). Standard mesh 
1900 nodes, fine mesh


17 K nodes.

Fig. 7. Unsteady force components on the nozzle top and bottom

walls. The geometry is nozzle E (Moore et al., 1973) with P01 ¼ 1 bar

and T01 ¼ 375 K. Note that for the symmetric oscillations, the top and

bottom wall forces are not identical due to slight asymmetry in the

mesh.
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has been applied, so the shock waves are rather smeared.

Nonetheless, the same sequence of oblique shock

structures as observed in the experiments of Adam and

Schnerr is clearly discernable. The log nucleation con-
tours are included chiefly for comparison with the paper

of Adam and Schnerr, but these also clearly demon-

strate the periodic asymmetry and mutual influence of

phase change and the oblique shock structure.

That these results are not merely a facet of the

numerical scheme is evident from Fig. 6, which depicts

the variation of oscillation frequency with decreasing

inlet stagnation temperature (plotted as inlet stagnation
subcooling in the figure). As the inlet temperature is

reduced (equivalent to increasing inlet relative humidity

for moist air flow), the flow pattern passes first through

steady supercritical and then symmetric unsteady

supercritical regimes. The frequency of the symmetric

oscillations increases with reduction in temperature, but

there is a limit below which this mode can no longer be

sustained. The frequency then jumps by a factor of
approximately 2, indicating the onset of the asymmetric

mode. If calculations are then continued whilst gradu-

ally increasing the temperature, an upper temperature

limit (or lower limit in subcooling) is reached, above

which the oscillations revert to the lower frequency,

symmetric form. These features, including the frequency

hysteresis, were computed by Adam and Schnerr using a

very different numerical scheme, and there is no doubt
that they constitute genuine flow phenomena. (Fig. 6

also shows a few results computed with a fine mesh

[approximately 17 K nodes], and these indicate no

strong dependence on mesh density.)

Although the asymmetric oscillation mode has also

been predicted within asymmetric geometries for moist

air flow (Heiler, 1999), there is as yet no evidence to

suggest that it will occur within the highly asymmetric
blade passages of steam turbines. However, if it were to
do so, it may have implications for both aerodynamic

performance and blade flutter. In this respect, Adam

and Schnerr (1997) predicted substantially larger

amplitude pressure oscillations for some of the asym-

metric cases than for the symmetric mode. The unsteady

force component,

f ¼
Z outlet

inlet

ðp � �pÞdx ð12Þ

(where �p is the time-averaged pressure), normalised with
respect to the steady component, is plotted in Fig. 7 for

the upper and lower walls, and for both the symmetric

and asymmetric oscillation modes. For this particular

nozzle, the amplitude of the oscillatory force is slightly

greater for the symmetric mode, which is in contrast to

the results presented by Adam and Schnerr for the

variation of pressure at their nozzle’s throat. However,

the magnitude of such unsteady forces is likely to de-
pend on nozzle geometry, and further study with other

nozzle profiles is required before general conclusions can

be drawn.
6. Conclusions

A calculation method for viscous flow of condensing
steam has been presented, together with results for

steady and unsteady flow in nozzles. The method em-

ploys unstructured grids which may be adapted in the

rapidly changing condensation zone. Viscous calcula-

tions for steady flow indicate that growth of the

boundary layer has a significant impact on the predicted

pressure distributions and droplet sizes, at least for cases

where two-dimensional effects are prominent.
Unsteady, inviscid calculations for a variety of nozzle

geometries have revealed that asymmetric modes of
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oscillation, which have previously only been observed in

moist air flow, may also occur in steam. So far, these

have been found for just one nozzle geometry and fur-

ther investigation is required to ascertain under what
circumstances the asymmetric modes occur.
Appendix A. Parameters and constants for the

turbulence model

The turbulence model given in Eqs. (4)–(6) is partic-
ularly suited to capturing near wall turbulence. The

damping term, fl, included in Eq. (4) accounts for wall

effects and is given by

fl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�a1Reg � a3Re3g � a5Re5gÞ

q
; ðA:1Þ

where Reg is the turbulent Reynolds number,

Reg ¼
qg

ffiffiffi
k

p

lL

: ðA:2Þ

g being the normal distance to the nearest wall. The

constants a1, a3, a5 are equal to 1.5 · 10�4, 5 · 10�7 and

1 · 10�10, respectively.
The turbulent time scale, tT, (Eq. 6) is given by

summation of the conventional turbulent time scale and

the Kolmogorov time scale,

tT ¼ k
e
þ

ffiffiffiffiffi
lL

qe

r
: ðA:3Þ

The first term dominates far from the wall, but tends to

zero close to the wall since a zero k wall boundary
condition is imposed.

The remaining constants Cl, Ce1, Ce2, rk, re in Eqs.

(4)–(6) take the values 0.09, 1.44, 1.92, 1.0 and 1.3,

respectively.
Fig. 8. Geometry of the rectangular Laval nozzles. (The depth of the

experimental test section was 152 mm.)
Appendix B. Droplet growth and nucleation

The droplet growth expression adopted for the cur-

rent work is a slightly modified version of the standard

Gyarmathy equation:

GðrÞ ¼ dr
dt

¼ kLDT ð1� r�=rÞ
qlðhv � hlÞðr þ 1:89ð1� mÞlv=PrÞ

: ðB:1Þ

The factor ð1� mÞ is a semi-empirical correction intro-

duced by Young (1982) to obtain agreement with

experimental data for low-pressure nozzle expansions.

The form of m is given in White and Young (1993). Al-
though this correction may be justified on physical

grounds (if the condensation and evaporation coeffi-

cients were to differ under non-equilibrium conditions),

m is effectively a tunable constant, and the values re-
quired to give agreement with experiment are given in

the relevant figure captions. The average growth rate, G,
used in Eq. (9) is approximated by evaluating GðrÞ at the
local Sauter mean radius, r32 ¼ l3=l2. This is the only
approximation involved in Eq. (9), and only incurs sig-

nificant error for very broad size distributions, (see

White, 2003).

Note that Eq. (B.1) includes the dependence of

droplet temperature on radius through the term r�=r.
This term accounts for droplet capillary subcooling and

is significant only for very small droplets. The critical

radius, r�, is defined by:

r� ¼
2rTs

qlðhv � hlÞDT
: ðB:2Þ

The nucleation rate is calculated from classical theory,

modified to include non-isothermal effects Kantrowitz

(1951):

JCL ¼ qc
1þ U

2r
pM3

� �1
2 qg

ql

exp

�
� 4pr2�r

3kTg

�
; ðB:3Þ

where qc is the condensation coefficient (assumed equal

to unity), and ð1þ UÞ is the non-isothermal correction

factor. The definition of U is standard and can be found

with discussion in Young (1982). Calculations under-

taken for a range of nozzle experiments (Simpson, 2004)

indicate that droplet sizes are consistently underpre-

dicted when using Eq. (B.3). Accordingly, a correction is
applied to JCL such that the nucleation rate used in Eq.

(9) is,

J ¼ nJCL; ðB:4Þ
with values for n typically �0.4. It is somewhat

unsatisfactory that such an adjustment should be nec-

essary, but it is worth pointing out that the required

reduction in nucleation rate could be achieved by a less

than 2% increase in surface tension. (The value of r is

assumed independent of droplet radius in Eqs. (B.2)
and (B.3).)
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Appendix C. Details of the nozzle geometry

The nozzles were formed from two shaped blocks

placed between parallel sidewalls. The blocks were ro-
tated and positioned to give the geometries outlined in

Fig. 8, (fuller details are given in Moore et al., 1973).

The nozzles B, C and E produce progressively decreas-

ing rates of expansion typical of flows though turbine

blade rows.
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